2854

with a copper crystal placed between the Al,O; sample
and our movable counter, oriented as in the copper
annihilation experiments. No Laue peaks were observed
in this “correlation-absorption” curve, taken with the
same statistical accuracy as the original copper N(6).

We conclude therefore that the observed high-
momentum anisotropies in copper can be attributed
to a large extent to HMC annihilations with the con-
duction band and that the observed order of magnitude
of these HMC is in agreement with simple independent
particle computations. It is clear that a far better
theoretical calculation is needed to include the fol-

PHYSICAL REVIEW B

VOLUME

CUSHNER, ERSKINE, AND BERKO 1

lowing effects neglected in our model: (a) k-dependent
Fourier components obtained from a “first-principle”
band computation, which includes s-d hybridization
both for the “s” and the “3d” bands and the effect of
the large energy gaps on the (111) faces, combined
with anisotropic positron wave functions!?; (b) k-de-
pendent enhancement factors due to positron-electron
correlation.!®

The authors thank A. Thompson and J. M. Weingart
for technical assistance during the experiments.

17 Similarly to the computation of Ref. 9 for Si.
18 J. P. Carbotte and S. Kahana, Phys. Rev. 139, A213 (1965).
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Straggling of Heavy Charged Particles: Comparison of Born Hydrogenic-Wave-Function
Approximation with Free-Electron Approximation*
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Statistical fluctuations in the energy loss of heavy charged particles in thin absorbers resulting from
collisions with atomic electrons are determined for collision cross sections obtained from the first Born
approximation calculated with hydrogenic wave functions. A comparison is given with the results calculated

with a 1/€? collision spectrum.

1. INTRODUCTION

TRAGGLING functions describe the statistical fluc-
tuations of the energy losses of fast charged
particles. Landau! has introduced a transport equation
describing the behavior of the straggling function f(x,A)
for energy losses A small compared to the initial energy
T of the incident particle:

af(x,A)

= [ w05, a=0ie = seae, @
ox 0
where f(x,A) is the probability density function of
particles that have penetrated a thickness x of the
absorber and have experienced an energy loss A; w(e)de
is the differential collision cross section for single
collisions, with an energy loss €; and o,=/¢" w(e)de is
the total collision cross section. This equation has re-
cently been discussed by Tschaldr,? and Kellerer.?

In experiments, for example, V, particles penetrate an
absorber of a given thickness x. The number dN of
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mission and Public Health Service Research Grant No. CA-08150
from the National Cancer Institute.

1 Now at Department of Radiology, University of Washington,
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1L. Landau, USSR ]. Phys. 8, 201 (1944).

2 C. Tschalir, Nucl. Instr. Methods 61, 141 (1968).

3 A. Kellerer, G. S. F. Bericht B-1 Strahlenbiologisches Institut
der Universitidt Miinchen.

particles emerging with energy losses between A and
A+dA is given by dN = N,f(A)dA. Often, only the mean
energy loss (A)= /" f(A)AdA is of interest. It is closely
related to the stopping power S: {(A)~xS. '

The collision cross section w/(e) is of great importance
in the solution of Eq. (1). The simple approximation
w(e)=Fk/e used so far’?* and a more realistic function
obtained from calculation in first Born approximation
using hydrogenic wave functions are therefore discussed
in Sec. 2. It may be noted, though, that the true
collision cross section w(e)de for single atoms is zero
below an energy €; equal to the difference in energy
between the lowest possible excited state and the ground
state of the atoms, and also vanishes rapidly for
> e,,~2m% Similarly, f(x, A—e) must be equal to zero
for e>A. The limits of integration introduced by
Vavilov have to be understood from these conditions.

The solution of the transport equation using the
Laplace transform!# is

1 potio S
fla,A)= — exp[pA—x/ w(e)(1— ‘P‘)de:]dp.
2’"1 ) 0 (2)

4P. V. Vavilov, Zh. Eksperim. i Teor. Fiz. 32, 920 (1957)
[English transl.: Soviet Phys.—JETP 5, 749 (1957)]. Extensive
tabulations of the Vavilov functions are given by Seltzer and
Berger, Natl. Acad. Sci—Natl. Res. Council, Publ. 1133, 187
(1967), 2nd printing.
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The derivation is discussed by Landau and Vavilov.
It should be noted that ¢ — 0 can be used in the limits
of the integral. For a general collision cross section,
numerical integration is required. Landau! and Vavilov*
achieved an analytic form for the integral over e, using
w(e)=k/e, but performed a numerical integration for
the integral over p. Blunck and Leisegang® and Shulek
et al.% introduced corrections due to resonance effects in
w(e). In this paper we progress further by exploring the
effects of cross sections calculated in first Born ap-
proximation, using hydrogenic wave functions. It is
possible to express the solution for a general w(e) in
terms of a correction applied to the Vavilov solution.
Therefore Vavilov’s method is discussed in Sec. 3. The
numerical integration of the integral over e in Eq. (2) is
discussed in Sec. 4. A generalization of the method of
Blunck and Leisegang and Shulek ef al. is discussed in
Sec. 5, and the modified straggling function is given in
Sec. 6. Quantities calculated with w(e)=*%k/¢ are de-
noted with primes, e.g., f'(x,A), I,

2. ATOMIC COLLISION CROSS SECTIONS

The practical results for straggling calculations so far
have been obtained with the use of the classical electron
cross section,!* modified by estimates®® of the influence
of the “resonance effects” on the second moment M, of
w(e). The collision cross section do’ describing the
collision of a heavy charged particle of charge ze,
kinetic energy 7, and velocity v=0¢ with a free electron
of mass m and charge —e is given by

do’=w(e)de=kie e,
de’=0,

for ei<e<en
for all other e, 3)

where k= 2r2%*/m1%. Since we are concerned with low
energies, a sufficient approximation for e, is given by
en=2m1% For the further applications in Eq. (13), the
moments M, of w(e)=ky1/e for n>1 will be required.
They are calculated for an absorber containing N
atoms per cm?® of atomic number Z,

k emn~1

ﬂ ) 4)

M, = k/ € 2ende=
0

where k=k1NZ, and ¢,=0, as assumed in the previous
papers.

It is the intent of this paper to investigate the
modifications necessary in the Vavilov theory caused by
the use of more realistic collision cross sections. As a
first, improved approximation, the values calculated
with the first Born approximation,”-® using hydrogenic

5 0. Blunck and S. Leisegang, Z. Physik 128, 500 (1950).

6 P. Shulek, B. M. Golovin, L. A. Kulyukina, S. V. Medved,
and P. Pavlovich, Yadern. Fiz. 4, 564 (1966) EEnglish transl.:
Soviet J. Nucl. Phys. 4, 400 (1967)].

7U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963).

8 H. Bethe, Ann. Physik 5, 325 (1930).
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wave functions,®! are used. Using Walske’s notation,®
do=FkJ (n,W)dW , (5)

where W= ¢/(Z—d)*R is the energy elost by the particle
expressed in suitable units, n=m*/[2(Z—d)*R] is the
energy of an electron having the same velocity as the
incident particle; R=13.6 eV is the Rydberg constant;
d is a shielding factor for the nuclear charge of the
absorber, depending on the electron shell; & is pro-
portional to the number of electrons under consideration.
The excitation function J is defined by

J o) = f P )| ?0-240, ©)

where ¢ is the change in momentum of the incident
particle, Q= ¢%/2m; | F(5,q)|? is the matrix element for
the transition from the ground state to the excited state
of energy W of the atom. Notice that the energy E of
the secondary electron (8 ray) is E=e—1, where [ is
the ionization energy of the atomic shell. The excitation
functions have been recalculated for the K and L
shells.!! The difference between k;/e2 and J can be
appreciated from a plot of do/de’=JW? as a function
of W. This is given in Figs. 1 and 2. The increase for
small W corresponds to the resonance effects discussed
by Bohr.”2 No simple analytic expression can be given
for J or for its moments M ,:

00

M=k / T, W)WdW . (7)
Wy

The lower limit is now exactly the lowest possible
excitation energy W, of the atomic shell; the upper
limit can be set at «, because J drops off rapidly near
W m=4n=2mv?/(Z—d)?R. It is to be expected, though,
that, for large 7, the tail beyond 49 (see Figs. 1 and 2)
will contribute increasingly to the higher moments.

The total collision cross section ¢;, equal to the
moment M, has been discussed, e.g., by Merzbacher
and Lewis® and by Brandt and Laubert.!* The stopping
power .S, equal to the first moment M, is discussed in
many papers.®’® The stopping number B=M/k is
compared with the expression In2m1?/I, used frequently
in simplified stopping-power theory, in Fig. 3.

9 M. C. Walske, Phys. Rev. 88, 1283 (1952); 101, 940 (1956).

1 G, S. Khandelwal and E. Merzbacher, Phys. Rev. 144, 349
(1966) ; 151, 12 (1966).

1 Unpublished calculations by the author, available on com-
puter tape. Approximate values can be obtained from Figs. 1
and 2.

2 N, Bohr, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd.
18, No. 8 (1953).

18 E. Merzbacher and H. W. Lewis, in Encyclopedia of Physics,
edited by S. Fliigge (Springer-Verlag, Berlin, 1958), Vol. 34.

14 W, Brandt and R. Laubert, Phys. Rev. 178, 225 (1969).

15 H. Bichsel, American Institute of Physics Handbook, 3rd ed.
(to be published).
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An approximation for the second moment has been
given in Livingston and Bethe!®; for the higher mo-
ments, M ,=M,’ is usually chosen. This is not a good
assumption, as mentioned above. The second and third
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16 M, S. Livingston and H. Bethe, Rev. Mod. Phys. 9, 263 (1937).

F16. 1. The excitation function Jx
for the K shell. Plotted is the product
J kW2, where W is the electron energy
in a suitable unit: W=¢/[(13.6 eV)
X(Z—0.3)%]. The parameter nx
=18 80082/ (Z—0.3)%is the value of W
for an electron of the same velocity
v=8¢ as the incident particle. The
energy en=2mv? for a free electron
corresponds to Wn,=4nx. The lower
limit for the integrals is W;=W min
=1x/(13.6 eV) X (Z—0.3)?, where I
is the energy to lift a K-shell electron
to the lowest unoccupied level of the
atom with atomic number Z. The
asymptotic value for large W <4k is
JW?2— 1.

moments for the L shell are given in Figs. 4 and 5; some
higher moments are listed in Table I.

For solids, the excitation function for valence elec-
trons will be modified for energy losses below 50 or 100

Fi16. 2. The product JW? for the L
shell. The units are the same as defined
for the K shell, except that (Z—0.3)2
is to be replaced by (Z—4.15)2. Notice
that J, as well as J x extends beyond
4nz. There is a small probability of
collisions with energy transfer e> 2m2,
Wi depends on Z: for Al, Win
~0.0926, for Pb, Wnin=20.167. The
asymptotic value of JpW?2is 4.
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eV to resemble a resonance-type cross-section curve,!7+18 * 8
with a finite slope toward low energies. For single L= [ w(g—erde. @)
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atoms, sharp peaks are expected in the cross section at
energy losses equal to the excitation energies.”® Although
these effects are quite important for o7 and S, they
produce relatively small changes in the higher moments
Mo M, ....

3. VAVILOV SOLUTION

first moment M; of w(e) from I,

Since p is imaginary, 7; is complex. In general, the
uncertainty in the knowledge of w(e) is greater at small
values of e. Landau and Vavilov therefore extract the

In order to splve Eq. (2) it will be useful to consider M= / w(e)ede, 9)
separately the integral over e:
A
Lo o
/— k
105~ /_ \\\
: Wmin= 0.093 . I~
™ o5 —/O,I35 %\
F16. 4. The ratio 7o=M /M’ of the —0.167 | I

cross section as calculated in this 7 00 /
paper and of the free-electron cross =
section for the L shell. The four curves P
are drawn for W;=Wnin=0.093 (sili- = g5/-
con), 0.115 (copper), 0.135 (silver)
and 0.167 (lead). For >4, the ex- : L SHELL
pression of Ref. 16 agrees approxi-
mately with the curves given here, but 90
deviates strongly at smaller 7. / / /
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17 P. Nozieres and D. Pines, Phys. Rev. 113, 1254 (1959).
18 R. E. Burge and D. L. Misell, Phil. Mag. 18, 251 (1968).
19 J. T. Park and F. D. Schowengerdt, Phys. Rev. 185, 152 (1969).
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by adding and subtracting pe in the parentheses:

Il=p/w(e)ede+/w(e) (1—e?e—pe)de, (10)
with

Izz/w(e)(l—e“l’e——pe)(le, (11)

and, since M, is the stopping power .S of the material,
we obtain

(12)

The behavior of w(e) at small values of e is less im-
portant in 7,, and for S an experimental value can be
chosen, thus eliminating uncertainties in w(e) for the
first moment. For the method described in Sec. 5, the

Ii=pS+I,.

TaBLE 1. Higher moments M, of the quantum-mechanical
collision cross section. M, depend very little on Wi, Tabulated
is Mn/M, .

n, 4 5 6 7 8 9 10
0.1 1.08 1.97  4.57

0.2 1.04 151 2.65

0.25 1.026 142 230  4.62 262 1926

0.4 1.012 127 180

0.9 1.003 112 135

1.5 1.001  1.074 1.210 1.434  1.821 2.85 25.5
4 1.0005 1.03 108

10 1.0005 1.01 1032 1.061  1.102 1.16 1.24
20 1.0005 1.01  1.016

40 1.0005  1.003  1.008

100 1.000  1.000 1.002 1.004  1.008 1.0115  1.016

70 100

power-series expansion of 7, will be needed:

© P"‘ © j)nMn
B (<0 [u(gete== % (-1
n=2 n! n=2 n!

(13)

where the M,= Sw(e)e"de [see also Egs. (4) and (7)]
are the moments®® of the collision cross-section spec-
trum w(e).

The evaluation of Eq. (11) using the free-electron
collision spectrum has been given by Vavilov and is
repeated here. The real and imaginary parts, ®(/5") and
g(Iy), are written separately, with p=1y, {=Yen:

em 1 —cosye cost—1
G{(Ig’)=/cf ; de=ky< —|-Sl(t)>
0 14

€

k
=—[cost—1+Si())],

(14)
€n
where
¢sint’
Si(t)E/ —dt’, Si(0)=0,
ot
en sinye—ye k
sty [
0 62 €m
X{t—sint+[Ci(t) —Int—y]}, (15)

where

tcost’—1
Ci()= / i finity, fory=0577216. (16)
0 14
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The functions & and g are plotted in Figs. 6 and 7 for
several values of €.

For any given collision spectrum w(e), two procedures
can be used to determine I»: (a) Direct numerical
evaluation of Eq. (11), discussed in Sec. 4, and (b)
calculations based on the use of Eq. (13), similar to the
methods used in Refs. 5 and 6, and discussed in Sec. 3.

4. TRANSFORM OF BORN-APPROXIMATION
COLLISION CROSS SECTIONS

The integral I; defined in Eq. (11) has been calculated
numerically for the collision cross section J (W) defined

100 T T

R(13)

168—L—
ol 0z oa | 2 4 10

y

F16.6. The real part ®(Zy’) of the integral I’ for three values
of W,,=4n1, as a function of the Laplace-transform parameter y.
The electron energies corresponding to W, are em=W,X13.6 eV
X (Z—4.15)2 The dotted line is ®R(I,) for the cross section calcu-
lated here, for 5. =10. This function is the exponent in the inte-
grand of Eq. (24).

in Sec. 2 for a number of purely imaginary values of p,
0 < |p|<1000. Since only a limited number of values of
J(W) are available at W=W,, n=1, 2, 3, ..., and
since (1—e?¢— pe) oscillates rather strongly, the mean-
value theorem has to be used for the integral:

bn
Fpm =k I W) [ (= =gy

= k Z ] (Wﬂ777> [bn - an+P_l (e—pa,, _ e_pb")

—3p(a2=0,9], (A7)
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F1c. 7. The imaginary part of the integral I, for three values

of Wo. The dotted lines show the function for I.. This function,
added to y(A—A), forms the argument of the cosine in Eq. (24).

where a,= (W W _1)Y2, b= (W, W ny1)'?, since the W,
follow a geometrical progression. The ratios r= ®(/3)/
®RUI,") and 7;=g(I2)/g(I5) are given in Figs. 8 and 9
for L-shell electrons. The numerical accuracy of the
results can be estimated from a comparison of the
evaluation of Eq. (17), using J'=1/W? with results
calculated with Egs. (14) and (15). The agreement is
within 0.19}; a slightly larger error for I, is expected
because of the faster change of J (W) at small .

08
00l

Fic. 8. The ratio » of the real part of I, and the real part
of I,'. The dotted lines indicate the correction by Shulek et al.
(Ref. 6). W;=0.095.
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Fi16. 9. The ratio 7;=g(I2)/J(I2’) of the imaginary part
Of I 2 and I 2’.

For very small values of p, 7, can be written as:
®R(I))=—3p*M>, (18)
JT2) = p*M /61, (19)

derived from Eq. (13), and therefore ®(I2)/®R(I)
zMz/Mgl and 5(12)/(3([2,)%M3/M3/_

5. METHOD OF MOMENTS

The direct evaluation of Eq. (13) is not practical,
because quite a large number of terms would have to be
calculated. Blunck and Leisegang® and Shulek ef al.’
suggested the comparison of M, with the moment M’
of the free-electron cross section. This method can
readily be extended to all moments. Using §,=M ,— M/,
with M, from Eq. (7) and M, from Eq. (4), we obtain

o (=1)"M,'p" © (—1)"p"5,
fel § (SO e (<1

(20)
n=2 n!

n=2 n!

The first sum is exactly 75, and the last sum, therefore,
is the contribution due to the difference in the higher
moments of the true collision cross section from the free-
electron value 1/¢. It is convenient to introduce

Dy=8./My/= (Mn/M»")—1
to modify the second sum
(=) pén _ (=1)"p"en"Dn
n! [n!'(n—1)em]

D, can be obtained from Figs. 4 and 5 and Table I.
Using the substitution p=1t/¢n, we obtain

= (=1)"(it)"Dn
—Se=en % _
n§2 [(n!(n—1)]

Shulek ef al.® have used this approach, introducing only
a second moment '

M2=k[€m,Zeff/Z+z 2667],f1 ln (Em/fz)] 5

—S=3 (21)

(22)

HANS BICHSEL 1

first discussed in Ref. 16, to get a second approximation
to /. Corresponding curves, using the more appropriate
second moments from Fig. 4, are shown in Fig. 8, for
nz=1.5 and 10. Since the region 1<p <10 is still quite
important for the convergence of Eq. (2) (see Fig. 14),
this procedure is usually not satisfactory. The imaginary
part is unchanged, since it does not contain M,. The use
of higher moments in Eq. (20) leads to problems; D, is
quite small (Table I), whereas the higher moments give
larger contributions and lead to wild fluctuations of S,
for p above 0.5 or 1.0. As elegant as the method may
appear, it is not practical.

6. MODIFICATIONS OF VAVILOV FUNCTION

With the function 7, defined in Eq. (11), it is now
possible to write Eq. (2) in the form

0.5 T T T T T T T
0.4
k=1
. = 0.25
0.3
¢
0.2
0.l
0

F16. 10. Straggling function f(x,A) for low-energy particles in a
thin detector. The abscissa is X=(A—A)/xk+{\), where (A)
=0.577216—p82—1—In «. The solid line represents results of my
theory; the dotted line is the Vavilov curve for 82=0. The differ-
ence for a slightly larger 82 is very small. The full width at half-
maximum (FWHM) of f’is 119, larger than that of f. Example:
protons in an argon-filled counter. With », =mv2/[ 2R (Z—4.15)]
~40T (MeV)/(Z—4.15)?% the energy of the proton is about 1.2
MeV. Since k=1, ¥~0.02 mg/cm? or 1 cm at about 40 Torr. The
mean energy loss amounts to about 3 keV, and would be affected
seriously by é-ray escape. The narrowing of the straggling curve
predicted here for the L shell would be partially compensated by
a widening contributed by the M-shell electrons. D= —0.018. .
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1 70 _
)= — / paBengy(23)
2 ) —to0

e

where A=xS is the mean energy loss of a beam of
particles. Further, using k= xk/ e, and p=1t/en, we have

1, A—A
/ expl:it (————~> —«r[ cost—14t Si(t)]
TEmJ —0 €m

—ixr;{t—sint4L [Ci(0) —lnt—yj}}ﬁ

f@,8)=

= »K—/ exp{ —kr[ cost—1-+t Si(1) ]}
w&Jo

A—A
Xcos[t ( >+m',~|:t'y —t+ sint

€m

+¢Ini—t Ci (t)]]dt. (24)

0.20 7

——Present theory
---=Vavilov
——Shulek et al.

0.05
/!

Fi1c. 11. Straggling function f(x,A) for L-shell electrons at
nr=1.5 (solid line). This is approximately the energy giving the
maximum quantum mechanical effect (see Fig. 4). The FWHM
of f(x,A) is about 349, wider than that of f’(x,A). Since the area
under the curve [equal to the moment M=/ f(x,A)dA] is not
very sensitive to the contributions from the tails of the function,
the peak height of the normalized function from an experiment
gives important information. To find it, determine the number of
particles occurring in the peak channel (the spectrum is assumed
to be measured in a multichannel analyzer) as a fraction of the
total number of particles in the spectrum, multiply it with x&/c,
where ¢ is the width of a channel in the same units as x%, and com-
pare with the maximum value of f(x,A). The measurement of
FWHM or the determination of the standard deviation is more
sensitive, though. Dy=0.10.
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Frc. 12. Medium-energy particles in a thin detector (e.g.,
~25-MeV protons in a silicon detector of thickness x=~3.7
mg/cm? with A=~63 keV). My theory: solid line; Vavilov theory
for 82=0: dotted line. The theory by Shulek et al. differs by only
a few perf]:ent from the solid line. The ratio of the FWHM is 1.12.
D»=0.047.

Note that the imaginary part of the integral is anti-
symmetric in ¢ and therefore does not contribute to the
integral. For r=r;,=1, Eq. (24) is exactly Vavilov’s
expression [ Eq. (V-16)] for 82=0. The terms containing
B2 in Eq. (V-16) appear because of the choice of w(e)
=ke2(1—B%/en) by Vavilov. This relativistic correc-
tion factor has been neglected here because the excita-
tion function J (W) is nonrelativistic. Notice that the
factor e* outside of the integral in Eq. (V-16) is not
constant in Eq. (24).

The function f(x,A) has been calculated for several
values of k for the values of 5z given in Fig. 8. The
results are given in Figs. 10-13. For comparison, the
Vavilov curves and curves including the correction for
the second moment (Shulek et al.) are also given.

An impression of the problems encountered in the
numerical integration of Eq. (24) can be obtained from
a plot of the integral as a function of the upper limit.
An example is shown in Fig. 14.

7. COMMENTS AND CONCLUSIONS

Straggling functions derived from the transport equa-
tion with the use of collision cross sections calculated in
the first Born approximation, with hydrogenic wave
functions, for the electrons in the atomic L shell, have
been discussed in this paper. It is expected that similar
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F16. 13. Similar to Fig. 11, for k=1. This would apply to 4-MeV
protons in a silicon detector of 1 mg/cm?2, A=70 keV. The ratio of
the FWHM is about 1.05, the ratio of the peaks is about the
same. D;=0.10.

results would be obtained for other shells. Substantial
deviations from the Vavilov functions and the functions
modified by Shulek ef al. are found, especially for low-
energy particles in thin absorbers. Further improve-
ments in the theoretical treatment require better col-
lision cross sections. For the application to any given
atom it would be necessary to calculate the contribution
for all the atomic shells. No reliable collision cross
sections for the higher shells are presently available. A
scaling procedure with adjustable parameters similar to
the method used for the “shell corrections” in stopping
power?®s or, alternatively, collision cross sections calcu-
lated from a statistical model of the atom,® might be
used.

Existing experimental straggling data?~?5 are not at
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Fic. 14. The integral of the inverse Laplace transform for the
straggling function f(x,A), Eq. (24), as a function of the upper
limit, for k=0.1, and A =12.3. The solid line is used for the function
with the quantum-mechanical cross section, the dotted line for the
free-electron cross section. The large oscillation for y<1 requires
great care in the numerical integration to avoid errors in the
relatively small value of the integral. For smaller values of A, the
oscillations are less important.
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suitable energies, or, in general, accurate enough to
confirm the trends discussed here. Relatively small
corrections to the Vavilov curves occur in the examples
presented here (Figs. 10-13). Very large modifications26
have to be expected for k<D, [this is equivalent to
Eq. (10) of Ref. 5]. In Fig. 11 xk=D,. The existing
computer program is not suitable for x<0.01.

For future straggling measurements, it will probably
be necessary to determine the first moment (the
stopping power) and the second moment (the standard
deviation) from the experiment, because the calculation
of collision cross sections with sufficient accuracy would
be extremely time consuming. The third and fourth
moments deviate only little from the {ree-electron
moments and probably cannot be determined experi-
mentally with sufficient accuracy (Fig. 5, Table I). For
the higher moments, even very small amounts of slit-
edge scattering, nuclear reactions, etc., contribute
heavily to the experimental straggling. The derivation
of further details of the collision cross sections from
straggling measurements, thus, does not appear promis-
ing, except maybe in extremely thin absorbers,'® with
only a few collisions per particle. For this type of
experiment, the Landau-Vavilov theory does not apply;
Kellerer’s convolution method® might be used instead.

26 J. W. Hilbert, N. A. Baily, and R. G. Lane, Phys. Rev.

168, 290 (1968).



